CHILDREN OF THE SCHOOL: THE FUTURE CLASSROOM

Jesse Jones Richter

August 2014

Abstract

This paper examines the history, current status, and future trajectories of the field of education. Special attention is given to the role played by technology. As a field, education has been documented since the ancient Greeks and Romans and may be categorized through various paradigms and revolutions throughout history. Considering historical trends and extrapolating these trends into the future, the field is interpreted and projected according to what we might expect with the advent of phenomena including globalization, shifting cultural climates, and the ever-changing socioeconomic status of regional populations. Forecasts at the ten, twenty, and thirty year marks are provided. Discussions regarding the role of technology utilize insights from Kurzweil (2005) and Tapscott and Williams (2012). Future manifestations of historical and current educational systems are portrayed as children of the school.

KEYWORDS
history of education; evolution of education; educational technology; futuring education

1DM, MBA, M.Ed., TESOL | Independent Researcher | cdintl@outlook.com
Introduction

Education is one of the oldest documented industries of our millennia-long society. Roots may be traced back to the days of the ancient Greeks and Romans. Still famous today are tales of Socrates and his mentee Plato, and indeed their ways of understanding (e.g., the Socratic Method of questioning) continue to hold a place in current teachings. There has been a steady unfolding of educational models from traditional styles of experiential and discovery-based learning to currents of information-transfer such as with the concept of professing knowledge to a captive audience of students. Eventually, now here in modern times, we may still see caprice in society’s subscriptions to various models within the industry. This tells us one thing for certain: the field has not yet reached a state of acceptable equilibrium, nor—posits this exploratory paper—will it in the near future according to trends in technology weighed against historical patterns.

Kurzweil (2005) is one cog in the trends of technology that predicts we are reaching towards some inevitable Singularity. This new epoch of human understanding and utilization of available science will certainly have an impact on the field of education which, almost exclusively to this point in time, has been dependent upon human interactions. The cognitive engineering that will supposedly stem from the Singularity will have reciprocal effects beyond the classroom: this will impact social, economic, and even political environments according to the inter-connectedness nature of the emerging technologies.

Authors Tapscott and Williams (2012) present a telling view of how education is unfolding. They discuss how education has historically been a matter of transmission from one party (i.e. the instructor) to the other (i.e. the learner). In current society, by contrast, education sees instructors more as facilitators as students independently receive, manipulate, and respond to external stimuli in some controlled or semi-controlled environment. This strangely mimics what was seen with the ancient Greeks in that pupils came to understand the world by interacting with it, not by receiving some prescribed dose of information from some supposed authority. This gives us reason to re-consider the nature of education and knowledge acquisition in general. Bellinger, et al. (2004) presents a discussion regarding the relationships between data, information, knowledge, and wisdom. From this model, it is implied that authentic comprehension comes by virtue of gestalt mechanisms as learners put together pieces of information cumulatively such that in the end, all the parts assume a new realm of meaning. The following table adapted from Ackoff (1972) and Richter (2011) display this paradigmatically:
<table>
<thead>
<tr>
<th>Stage</th>
<th>Cognitive Process</th>
<th>Teacher Input</th>
<th>Student Analysis & Response</th>
<th>Teacher Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Experience</td>
<td>🎬</td>
<td>I see something. “It looks like a symbol.”</td>
<td>“Yes, it is a symbol.”</td>
</tr>
<tr>
<td>2</td>
<td>Prior Learning</td>
<td>o v. 0 v. O</td>
<td>Symbols can have many meanings. “I am thinking about three possible meanings.”</td>
<td>“Yes, three possible symbols.”</td>
</tr>
<tr>
<td>3</td>
<td>Data</td>
<td>o</td>
<td>Is this a letter, a number, or something else? “It looks like a circle.”</td>
<td>“Maybe.”</td>
</tr>
<tr>
<td>4</td>
<td>Information</td>
<td>uno</td>
<td>It appears to be part of a word, not a number. “It must be a letter.”</td>
<td>“Yes, a letter.”</td>
</tr>
<tr>
<td>5</td>
<td>Knowledge</td>
<td>uno = 1</td>
<td>The information seems to have a meaning. “This word must represent the number 1.”</td>
<td>“Yes, it does, in the Spanish language.”</td>
</tr>
<tr>
<td>6</td>
<td>Understanding</td>
<td>dos</td>
<td>I’m starting to see a pattern… “The word dos must represent the number 2.”</td>
<td>“Yes, you are correct.”</td>
</tr>
<tr>
<td>7</td>
<td>New Learning</td>
<td>(no input)</td>
<td>I wonder what word represents the number 3… (Student explores and researches.”</td>
<td>“What did you learn?”</td>
</tr>
</tbody>
</table>

One particularly interesting economic impact will be the transformation of the education industry as a whole: it is not too far off to imagine how the field will be folded inside-out as human interactions are replaced by electronic interactions because they are suddenly preferential in their highly efficient nature. Tapscott and Williams (2012) present *Macrowikinomics* as a foresight of this new era. The authors put upon us an obligation to accept the fossilization of many familiar ways of life: the passing of libraries, print media, music production labels, and…the dissolution of classic education models. Since the dawn of the Internet, we have witnessed the steady evolution of these commodities as we near integrated systems and streamlined ways of sharing, manipulating, and responding to information. It might be said that seamless transitions require casual transactions: no longer can we count on the cumbersome systems of the past to transfer the information that is necessary to keep business alive. Tangible
technologies such as Google Glass and cloud computing are pushing the Internet even further along to capabilities that once were strictly unfathomable. The education industry—though fraught with copious challenges—faithfully follows this path of emerging technologies.

This paper aims to explore these exciting new dimensions of education in light of the technologies surrounding the business horizon. We may look backwards and see how far education has developed over the millennia; we may examine the Renaissance period and see how formal education was crystalized within university walls; we may then see living examples of education in our current world; finally, we may project forward and prepare for new paradigms in education that may arrive sooner than today.

From Real to Surreal: The Next 10 Years

From one of the earliest recorded instances of education—Socrates and Plato—we see that this social phenomenon was just that—social. It involved no less than two people, with some aim or objective and some amount of structure. The school was born. This differs from what may be described as *natural* learning whereby a human, usually a very young human, wanders about through the days and gradually internalizes a level of comprehension about the natural world by virtue of exploration and experimentation. Fundamentally, this learning process involved an interaction with nature: the cyclical receiving, processing, and responding to external stimuli. In an attempt to control this process, perhaps in pursuit of efficiency or expediency, humankind has gradually institutionalized the learning process. To jump to the current context and extreme other end, it is clear to see that this process of formal schooling has turned into much more of a business venture. It now seems to be an obligation, an expectation, an absolute requirement in some societies that we become *educated*. Technology has not been excluded from this process, especially in recent years. What once was a seemingly casual interaction between two humans—one learned and one unlearned—is now a formalized system of acquiring knowledge via cost structures, institutions, and politics. This paper further argues that this phenomenon is the whim of capitalization as those who are so inclined take advantage of politics, technology and social expectations to turn learning into a business venture as populations grow and the tendencies towards an educated society swell. What may be expected within the next decade according to already unfolding phenomena are exacerbations of “surreal” educational systems.

Quite simply put, education has gone virtual. This is not news, nor will it be news in the future due to rapidly evolving systems from simple correspondence courses of decades past to
current-day online platforms to present, yet futuristic models involving massive student populations and unlimited open learning opportunities. Specifically, we may take examples such as Stanford’s experimental Massive Open Online Course (MOOC) model, MIT’s OpenCourseWare (OCW), and Harvard’s free new doctor of educational leadership (Ed.L.D.) program. All of these are shocking trends perhaps unanticipated only a handful of years ago. Additionally, we see a steady shift towards for-profit education with the explosion of corporate-owned schools such as our own Colorado Technical University under the umbrella of Career Education Corp. The situation here is stunning: we see a landscape of vastly different business models both on temporal and spatial scales.

One last observation here comes from a conversation I had recently with a student who attends high school in Colorado. During that chat, I was introduced to the concept of flipped classrooms (flippedclassrooms.com), which is an educational model developed by Jonathan Bergmann and Aaron Sams whereby education happens equally outside of the classroom as it does inside. In this model, students (i.e. secondary level) are expected to receive and process information during their free time using technology such as podcasts and asynchronous platforms to explore academic concepts. Once they arrive at school, they spend that time practicing and applying the concepts they have already been exposed to, hence the term flipped. In all of these instances of distance education, online models, and flipped learning, the educational process has resulted in students being detached from traditional environments and the so-called teachers who are responsible for delivering their respective pedagogies. Education has quite literally moved from real to surreal.

Global Classrooms

The same trend is common at the university level: we see many instances of alliances such as Purdue’s official stamp on the American University of the Middle East and recognition by the University of Colorado-Colorado Springs of the Daegu Gyeongbuk English Village in South Korea. Countless more examples exist. What is noteworthy about these increasingly common international alliances is that students are no longer confined—geographically—within their home culture. They shift seamlessly across borders as if it is a natural step beyond high school graduation. Concurrent with these developments is the advent of multi-institutional degree programs. I might name my own current school as one such example as a secondary-level institution that offers diplomas from the national government of Bolivia, the national government
of the United States, and the International Baccalaureate Organization (IBO) based in Geneva. Other world-renowned programs are also easy to find: international MBA programs are offered by the Universidad de Navarra’s IESE Business School, the Escuela de Alta Dirección y Administración, and the famous European Institute of Business Administration.

Misconceptions and False Expectations

One problematic reality in the picture of international transitions is that of the illusion of the United States education system. Long-renowned as a top destination for seekers of world-class schooling, the United States has not fared so well in recent years according to international surveys. The Organisation for Economic Cooperation and Development (OECD) (2009) ranked the U.S. lower than 20 other nations worldwide in performance levels for mathematics, science, and reading. Stanford University also offers insight that despite increasing price tags, the overall quality of education in the U.S. is diminishing (2010). This points to an inflated reputation that is perhaps a point of false advertising for those viewing from abroad. More disturbingly, there seems to be evidence for decreasing interest in U.S. education amongst locals. Hemminger (2007) reports that a mere 18% of academic prospects who enter secondary levels will end up with a tertiary level education on time (i.e. within 6 years following high school). One potential impetus for this mirrors a shift in American economics: the movement away from needs in academia towards needs in fundamental skills such as trades and entrepreneurial ventures.

This loops back to the ties between traditional school models and emerging market demands: that educational modeling will necessarily follow economic trends. When we look at the tightening grip of technology on the industry, we see a vast movement towards technology-based learning with already-familiar devices such as iPads, smart phones, Smart Boards, QR coding, podcasts, and cloud networking (Mietzner & Reger, 2005; SMART Technologies, n.d.). Adding to this, Cady (2013) posits that devices are one thing, but that artificial intelligence (AI) is a whole new dimension that will likely transform the industry.

Reverse Engineering the Human Brain: The Next 20 Years

Kurzweil’s *Singularity* theory spends quite a bit of time on AI. Fundamentally, AI is an attempt to model computers after the human brain. One point I am curious about is that surrounding the issue itself—how can we even think that we can engineer human thought processes when we are unlikely to ever fully understand the human brain in the first place? Nonetheless, Kurzweil makes pioneering claims as to how we will move forward with this
phenomenal engineering endeavor, “We will modify, refine, and extend these techniques as we apply them to computational technologies that are far more powerful than the electrochemical processing that takes place in biological neurons” (p. 127). Is artificial learning (AL) in sight? In some ways it is, and it is projected by Kurzweil to be quite well established in the next two decades or so. Can we suppose that someday in the upcoming future we will be able to pre-program our brains for certain aptitudes? Although quite knowingly futuristic, this reality would effectively be two jumps from our current space: from virtual education to artificial education. If successful, this new model could completely wipe out the traditional models we have known since the fourteenth century.

Another issue at stake here is the inevitable conflict between natural learning and engineered learning. As we currently understand, learning is only effective via natural methods. In other words—as was discussed earlier with young humans—we require interaction and experimentation with our world in order to truly comprehend phenomena. These processes are inductive. When we learn by deduction, we are essentially absorbing only information, not comprehension. This is why the Scientific Method favors deduction: because science is essentially the attempt to understand the natural world. I.e., it is a top-down process of analyzing the pre-existing world. The same is true for mathematics: we do not invent mathematics, we discover mathematics that exist in natural systems. With AI, is it possible that we are risking a highly volatile shift in learning preferences, and if so, what are the implications? Does this mean that we will completely replace natural, inductive learning with artificial, deductive learning? I see this as one real danger of replacing humans with machines as we move towards Kurzweil’s *Singularity*.

Dual Phenomena

Kurzweil touches upon these ideas with acknowledgement of favoritism towards online environments relative to traditional models. The OCW presented by MIT is perhaps the most popular version of free, online curricula, but other institutions have followed suit as has been mentioned earlier in this paper. Directly related to this movement to online is the trend for fee free curricula. It is increasingly difficult to regulate massive learning opportunities, and much easier to provide open source, open market materials much as in the same way that is discussed by Tapscott and Williams with the record label industry. What are the consequences of this shift from fee based to fee free programs? If our population growth were less of a concern, I do
wonder how these industries may have taken a different direction; after all, in order to have massive education, there must be the masses.

Tapscott and Williams (2012) offer compelling statistics that point towards imminent shifts in the field of education. The authors discuss how higher education enrollment is high; tuition rates are also high; yet graduation rates are falling. Is this perhaps a subtle indicator that schools are existing less for the purpose of education and more for the purpose of generating revenue? The development of massive for-profit school systems seems to suggest this as well. The same authors inform us that the mother of the MBA program, Harvard University, has approximately 900 MBA students enrolled in recent years compared with approximately 16,000 at the well-known quasi school, the University of Phoenix. What accounts for these differences? The fundamental business models themselves are a great portion of the reason: while traditional universities stick to traditional practices, the newer, corporate schools now have enticing campaigns advertising open enrollment and life experience credits. The net result is that almost anyone can “get into” college when traditionally this was a venture for only the academically inclined sectors of our population.

Is there any harm in offering education to all, or at least making it more accessible? Clearly there is a struggle within the industry to balance effectiveness (i.e. authentic learning) with efficiency (i.e. profit and the survival of the enterprise). We must remember that people go to school for different reasons. Some wish to acquire knowledge and skill sets; others enjoy studying and social interaction; some simply want to earn an additional title for professional and/or social status purposes. So then what is the ultimate goal of education? Is it a personal goal, a cultural goal, or a societal goal? And what does it mean to be “educated”?

In previous papers here in the course, I have discussed some of the more extreme cases of so-called education. In addition to the open enrolment phenomena and credit for life experience trends, we also see a niche sector of the market that simply sells education as a product rather than as a service. A quick Internet search can lead you to Express University Degree (http://www.expressuniversitydegree.com/) where you can purchase a doctorate for $250. As legal entities, there is nothing in society that prohibits these institutions, and from personal experience working in the field, I see that many employers do not have the patience or ability to verify the legitimacy of academic records, especially internationally where foreign employers are not familiar with American systems of academic credentials. Considering this, we have an
obligation to determine what we mean by “education,” “intelligence,” “knowledge,” and what it subsequently means to have a society of people with apparently higher ability levels.

What Do We Really Want?

The Singularity implies that we will have the ability to reach higher levels of intelligence, or at least computing power parallel to intelligence. Will this destroy the need to attend school? Suppose we can engineer intelligence and other abilities or conditions directly into our minds from or before birth...how can we determine the mechanisms to do so, and what are the ethical boundaries that we must respect? Suppose we can reach this ability. Suppose the distant (or not so distant) future will be a population of super-educated individuals, potentially each with the equivalent of multiple doctorate degrees and centuries of professional experience. How do we differentiate between some lofty tech dream and a practical reality where society is still able to function according to human nature? Society is currently stratified into the lower, middle, and upper-class levels. Accordingly, we have niche industries for those sub-populations. I suppose if we wish to maintain this sort of structure, we would then program people to fill those roles, or we would eliminate the need for these roles at all. For example, some teaching duties might evaporate such as with so-called special education systems: since we have out-engineered the special education population, we no longer need teachers for those students, and we no longer need the academic programs to train those teachers (keeping in mind that special education instruction, as a profession, is increasingly needed in current society amongst K-12 schools).

The other impact on the world of education would be more physiological and social. We must keep in mind that education is not simply a goal; it is a process. Along with this process comes biological development and the opportunity for young people to develop social skill sets. Oftentimes, it may be strongly argued, education is directly linked to social interaction. Maria Montessori, with her famous methods of young-learner education, communicated this message to the world: that learning is a process of interacting with one’s environment, which includes the interpersonal dimension. By removing this, we are endangering our society in that we are simultaneously promoting artificial education while actively shuffling away natural education. It is a completely opposite-direction process that may have a Trojan horse of hidden dangers behind the pleasant and clearly-identifiable benefits.

And what about athletics? By pre-engineering athletic ability, do we dissolve the traditionally important facet of competition? All games would basically be rigged operations
with predictable—or definitively known—outcomes. At the highest level of athletic competition, the Olympics, would we then be creating inequalities and thus international dissent as the Singularity allows some faster-developing nations to gain the technological edge quicker than others?

Aside from just sports and education, many other industries would likely face the same challenges. Even the field of politics would morph as politicians would no longer need to hold campaigns or debates; all would be pre-determined, that is of course, should we even need government anymore. The main message here is that it may be prudent for us to examine exactly what we really want and need before we pursue any particular technology. Kurzweil might argue that we have little say in the forthcoming Singularity, and furthermore that it is already strongly established in many aspects of our cultures.

Far Future Implications: The Next 30 Years

If we look at current situations in education—the presence of fee-free schools amongst high-tuition programs; the presence of online and massively online programs—we see a mixed field of business models. This tells us clearly at least two things: first of all, the field has not yet reached stability in terms of what might be the optimal mode of education; secondly, we see that it may be possible for the new landscape to actually have a great variety of models depending on the needs and demands of various cultures. For those who wish to work in trade roles, there will likely remain a niche educational market for that population. For those who thrive in international business, there is clearly also a niche for that group. What then is the future of education when we consider the starkly diverse models currently in the market? I consider this to be the “far” future of education due to the accelerating rate of technology (Kurzweil, 2012) and obvious trends in globalization; upcoming decades are no longer so “near” future when we examine the real-situation expected outcomes. Many schools seem to be grappling with this question due to their diversification of services. For example, although Harvard has its fancy new free doctorate program, it still maintains itself as a traditional brick-and-mortar institution. Although Colorado Technical University brings most of its income from online programs, it still maintains a network of ground campuses. There tends to be balance, in other words, between the business models despite their perceived polarity. Alternative models, however, are likely to continue their advancement as a now-global population thirsts for readily accessible and affordable, high-quality schooling.
I imagine there will be a remaining need for other schools, schools that are more difficult to replace with technology. Institutions that offer services such as training for massage therapists, athletes, or chiropractors have a better chance at maintaining person-to-person educational formats. Doctors, as well, will require a certain degree of hands-on training despite the reality that the medical field is also undergoing a shift towards the tech side.

Essentially, we can imagine how many traditional models of education utilized only lower levels (i.e. processes) represented in the table. Higher levels—notably the terminal level—are characteristic of genuine learning that is quite undisputable, such as the processes undergone by young human and animal creatures as they gain understanding via unstructured interaction with their environments. Adults attempt to mimic this in formal environments; the chief characteristic, after all, of a doctoral education is the fundamental creation of new knowledge!

What’s in a degree?

What was the original purpose of pursuing a tertiary level degree? Quite certainly, it was to be able to get a good job and have the skill set necessary to work within that job. Not surprisingly, it was once challenging to get a degree; it was also prestigious and something directly aligned with the expectant market sector. However, we see many counter-examples where college has not been the avenue to success. Consider founders of Microsoft, Apple and Facebook, amongst other giant companies, where the developers were entrepreneurial pioneers rather than academically-equipped graduates. The education market has suffered quite a bit from this: teaching jobs are in lesser demand, salaries are lower, and even the prospect of holding a full-time contract with a salary and benefits is increasingly uncommon for educators, especially at the university level. Having a degree once meant having an economic advantage. Today it seems as though a degree is more of a social status marker. I have seen also the consequence of lesser pay in other countries for educated staff relative to those who outrank them in years of experience (i.e. without formal training). So what is the point of getting a degree if it no longer guarantees a skill set? Employers tend to prefer those who have demonstrative skills v. perceived skills as are usually linked to academic papers. If we examine the situation even closer, we must consider the fact that many degree holders are actually at an economic disadvantage as they have at some point paid—or will have to pay back in the future—massive amounts of tuition money relative to those who enjoy the same salary but without the expenditures and debt. Really, what is the incentive?
I will finish this section with a narrative about an exchange I had with a young, ambitious high school teacher at a prestigious IB school in Colorado. This young man seemed quite upset, so I inquired. I learned that he was disappointed with his job due to the low salary he was earning relative to the amount of time, energy and money he had to invest in order to get the job. He is a language teacher with a masters degree in education and more than five years of field experience. He also holds a State level teaching license, which is another expensive and tedious item to earn. Candidly, he told me that he is earning approximately $24,000 dollars salary before taxes. Doing the math, it is not difficult to see that this is not a well-paid position according to the credentials required. It seems as though these stories are becoming more common and perhaps indicative of the future of the field of education as a whole. How will our tech-hungry society move forward when we have these dismal cases standing before our eyes?

Education as a Commodity

In ancient Greece—which may be used here as perhaps the earliest recorded age of formal education—schooling was informal, unstructured, and without tuition. We know this from archives of Plato’s studentship under Socrates, and so-forth as history unfolded through eras into modern times. A macro-temporal phenomenon is now coming full-circle: as education was economized through formal institutions and cost structures over the centuries, we are now seeing an unfolding world of education that is once again informal and without charge. In previous discussions here in MGMT 855, I have discussed entities such as the Massachusetts Institute of Technology with its OpenCourseWare (OCW); Stanford’s Massive Open Online Courses (MOOCs); and Harvard’s free new Ed.L.D.. Another noteworthy platform—mentioned in Tapscott and Williams (2012)—is AcademicEarth.com. This organization offers free online courses from a variety of known universities. To add to the list, we might also consider similar models of free training venues such as Educator.com where, rather than featuring university courses, individual professional educators offer high-resolution lectures.

These observations are telling of the times because of the tendency for currently emerging education models to essentially take the form of what education once was millennia ago: free, unstructured, and highly learner-centered. What is the connection with sustainability? Perhaps we are seeing the utter inappropriateness of forcing education into an economic sector; perhaps we are seeing that effective education is free from governance; perhaps authentic comprehension of our world is an inherent pursuit rather than an extrinsic prescription, and in
these perceptions of education, we see opportunities for sustainability.

Not only has education in and of itself become more focused on authentic learning, but it has had reciprocally been affected by advances in our understandings of sustainability. The two concepts are linked: in order for education to be authentic, it must be sustainability-minded; and in order for us to practice sustainability, we must focus on authentic, integrated learning. We might consider the *Journal of Sustainability Education*, which focuses on this dual mission of linking pedagogy and andragogy to long-range social, environmental and economic stability. In this sense, academic research has fed back into the cycle of learning to influence the nature of formal instruction.

Other schools have followed suit. The British Columbia Ministry of Education has developed the *Sustainability Education Framework*, which offers “the vision to encourage the K-12 education system to show leadership in adopting and promoting: environmentally sustainable practices, and learning opportunities that support healthy, natural, social and economic environments for current and future generations” (p. 1). Amongst many other similar efforts, I would like to also offer the *Cloud Institute for Sustainability Education* and UNESCO’s *Education for Sustainable Development* as key players in the revolution. One does not need to look far to see a sense of solidarity and mutual press towards a world community of sustainability.

Conclusion

What may be expected in the next decade for the field of education? Trends discussed in this paper give some insight: movement from traditional classrooms to virtual environments; from fee to free courseware; from local to international contexts; and from institution-centered to learner-centered models. I expect to see a steady decline of physical university infrastructure and a net development of student populations and learning environments without identifiable boundaries. I also expect to see further overlapping of institutions as globalization encourages international alliances and degree programs. This implies a subsequent mixing of cultures and expectations as schools strive to develop mutually agreeable academic offerings that will function within local and global contexts alike.

There is very little room for debate that an eventual singularity will drastically change the industry of education, which in turn will drastically change other aspects of society. What will future students need to know? Well, nothing really if we are cognitively programmable. But
before we reach this ability, future students absolutely must consider potential negative impacts of making education more accessible and efficient. Kurzweil tends to think positively about the impacts of the singularity on education, stating that the ideal technology will allow us to download patterns of data (i.e. software) into our new forms of intelligence. However, the ability to do so will prompt many other important discussions: who will regulate this? (*Must* it be regulated?) How will we regulate it? Will it be free and accessible to everyone? These questions are easy to ask yet hard to answer, and it will be our mutual responsibility as a global population to determine how we will handle these complex issues.

Sustainability is strongly present in new and re-engineered business models. Education as an industry—representing schools and their own business models—has responded to this new-world movement by feeding academic research back into instructional practices so as to bolster business practices now and tomorrow. A key element of this movement is increasing characterization towards ancient models of education dating back to the Greeks: that education tends to be a self-sought, natural process best detached from formal structuring and governance. Modern schools seem to recognize this as they unfold models reminiscent of those ancient platforms in response to the increasing worldwide demand for accessible and informal training.
References

